
Connect to an Oracle Database from Visual Basic 6

Connect to an Oracle Database from 
Visual Basic 6 (Part 2)
Preface

This is Part 2 in a 2 part series on using Visual Basic 6 to connect to an Oracle 
database. In Part 1, I showed you how to use an ADO Data Control to make the 
connection. In this article, I show you how to use ADO Objects to make the 
connection. Not only will the article be useful for the Oracle programmers in the 
audience, it will also show you how to use ADO objects in your program.

ADO Objects

What's an Object? Hopefully you've read by well-received book, Learn to 
Program with Visual Basic 6 Objects. As much as I would love to spend a lot of 
time discussing object variables in detail, I'm going to presume that you know 
what they are and how, in a nutshell, they refer to an object instantiated from a 
class or template.

Having said that, I will tell you that the ADO Object model can be confusing, 
particularly because there are frequently many ways to achieve the same 
functionality.

In this article, we will create an ADO Connection Object, then use an ADO 
Command Object to return the results of a query to an ADO Recordset object. 
Finally, as an added bonus, I'll show you something that your average 
programmer doesn't know can be done--we'll set the Recordsource of an ADO 
DataGrid to the recordset we produce in code. In other words, without the ADO 
Data Control, we'll populate a DataGrid.

Similar to what we did when we added the ADO Data Control to our Visual Basic 
Toolbox, in order to use ADO Objects we must first set a reference to the ADO 
Object Library. The version of the ADO Object Library installed on your PC will 
vary depending upon a number of factors-the PC I'm using as I write this article 
contains ADO Version 2.x.

To add a reference, select Project-References from the Visual Basic Menu Bar, 
then select Microsoft ActiveX Data Objects 2.6 Library. If the version number 
doesn't match yours exactly, that's fine---just be sure to select the ActiveX Data 
Objects Library, not the ActiveX Data Objects Recordset Library that follows it in 
the list. Be sure that you select Project-References, NOT Project-Components. 
Object libraries have no visible interface, and so they won't appear in the 

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (1 of 8)3/28/2004 11:35:52 AM

http://www.johnsmiley.com/mybooks/1929685165/1929685165.htm
http://www.johnsmiley.com/mybooks/1929685165/1929685165.htm


Connect to an Oracle Database from Visual Basic 6

Components section.

When you click on the OK button, nothing obvious happens--but you now have 
access to ADO Objects in your program. 

Before we get too far, let's start the process of adding the ADO DataGrid Control 
to our form. In order to do that, we need to select Project-Components (yes, 
that's right, Components this time) from the Visual Basic Menu Bar, and select 
Microsoft DataGrid Control 6.0. 

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (2 of 8)3/28/2004 11:35:52 AM



Connect to an Oracle Database from Visual Basic 6

When you click on the OK button, the DataGrid Control (the ADO version) is 
added to the Visual Basic Toolbox.

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (3 of 8)3/28/2004 11:35:52 AM



Connect to an Oracle Database from Visual Basic 6

With the DataGrid control in your Toolbox, now it's time to add it to your form...

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (4 of 8)3/28/2004 11:35:52 AM



Connect to an Oracle Database from Visual Basic 6

Working with ADO Objects to achieve your 
Oracle Connection

The Connection Property

It was at this point in Part 1 of this article that we adjusted properties of the ADO 
Data Control to achieve a Connection to an Oracle Database, and to build a 
Recordset which was then used to populate the ADO DataGrid. Here, we'll use 
an ADO Connection Object and a Recordset Object to achieve the same 
functionality. For demonstration purposes, let's place this code in the Load Event 
Procedure of the Form...

Dim oconn As New ADODB.Connection

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (5 of 8)3/28/2004 11:35:52 AM



Connect to an Oracle Database from Visual Basic 6

Dim rs As New ADODB.Recordset
Dim strSQL As String

strSQL = "SELECT * FROM EMPLOYEES"

Set oconn = New ADODB.Connection
oconn.Open "Provider=msdaora;Data Source=John.world;User Id=jsmiley;
Password=neveruseyourdogsnameasyourpassword;"

rs.CursorType = adOpenStatic
rs.CursorLocation = adUseClient
rs.LockType = adLockOptimistic

rs.Open strSQL, oconn, , , adCmdText

Set DataGrid1.DataSource = rs

What's going on?

Let me explain. These first two lines of code declare 2 object variables. The first 
is an ADO Connection Object

Dim oconn As New ADODB.Connection

followed by an ADO Recordset Object

Dim rs As New ADODB.Recordset

Both of these declarations are necessary in order to build a Recordset--which is 
a virtual (in memory) representation of an actual Oracle table in our Database. 
The names for these two object variables are pretty standard, and you see them 
all the time in code and in books and articles. In fact, if you search for oconn or 
rs using a Google search, you'll gets lots of results for ADO.

The final variable declaration is a String variable that we will use to 'hold' the 
SQL statement used to build our recordset.

Dim strSQL As String

Once we've declared the strSQL variable, it's time to assign a SQL statement to 
it. You may remember this statement from Part 1 of this article--it's used to 
retrieve every record from the Employees table in my Oracle database...

strSQL = "SELECT * FROM EMPLOYEES"

Our next step is to open our ADO Connection. We do that by executing the 

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (6 of 8)3/28/2004 11:35:52 AM



Connect to an Oracle Database from Visual Basic 6

Open method of our Connection Object. The Open method is looking for four 
parameters: the Provider name, the Data Source (or HostName), the User ID 
and the Password of the database in question. 

oconn.Open "Provider=msdaora;Data Source=John.world;User Id=jsmiley;
Password=neveruseyourdogsnameasyourpassword;"

Do the details of the Open Method look familiar? They should. In Part 1 I told 
you that the Connection String that the ADO Data Control wizard built for us 
could be used to open a Connection in code. In fact, some programmers use the 
ADO Data Control wizard to build their Connection Strings for them, and then 
copy and paste them into the code window.

Before we build the Recordset object (not the same as the Connection object) 
we need to adjust three properties of the Recordset object, the CursorType, 
CursorLocation and LockType. If you want to know more about the details of the 
Recordset object, I highly recommend Wrox's ADO 2.6 Programmer's Guide.

rs.CursorType = adOpenStatic
rs.CursorLocation = adUseClient
rs.LockType = adLockOptimistic

Now it's time to open the Recordset. If you are confused about the difference 
between a Connection and a Recordset, think of the Connection as the 
Database window you see when you first start Access. The Database contains a 
window with a list of tables that you can then select. When you select one, a 
Data Window opens up with just the information from that table. This is the 
equivalent of the Recordset.

rs.Open strSQL, oconn, , , adCmdText

In theory, we now have a Recordset object built containing all of the data in the 
Employees table of my Oracle database. How do we see the Recordset?

We can use the Set statement to assign the Recordset object to the DataSource 
property of our DataGrid.

Set DataGrid1.DataSource = rs

If we now run the program, the code in the Load Event procedure of the form 
executes. A Connection object is created, initiating the Connection to my Oracle 
Database. Then a Recordset object is created, retrieving Employee records. 
Finally, the DataSource property of the DataGrid is set to point to the Recordset 
object. Here's our form after the code executes--as you can see, the DataGrid 
is now populated.

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (7 of 8)3/28/2004 11:35:52 AM

http://www.amazon.com/exec/obidos/ASIN/186100463X/ref=nosim/professorsmileys/102-4499480-2558503


Connect to an Oracle Database from Visual Basic 6

Summary

I hope you've enjoyed this article. 

http://www.johnsmiley.com/cis18.notfree/Smiley004/Smiley004.htm (8 of 8)3/28/2004 11:35:52 AM


	johnsmiley.com
	Connect to an Oracle Database from Visual Basic 6


