
Creating Visual Basic Controls At Runtime

Create Visual Basic 6 Controls At Runtime 

Did you know that it's possible to create controls at runtime?

That's right. If you wish, you can add additional controls to your form at 
runtime. This capability gives your Visual Basic program the ultimate in 
flexibility---allowing you to dynamically control the appearance of your 
form at runtime---not only the placement of controls, but also the type 
and number of controls that appear on the form.

Many Visual Basic programmers are aware that it's possible to create 
controls at runtime by first creating a control array, and then adding 
additional members to the control array at runtime by using the Load 
Statement. This is the first method I'll be examining in this article. In 
addition, I'll also show you how can create controls at runtime entirely 
from scratch, without the need to first create a control array.

 

Method 1---Using a Control Array to create controls

To create a control at run time using this method you first must create 
a control array for the control you wish to dynamically create. In other 
words, if you want to create checkboxes at run time, you first must 
create a control array of checkboxes.

For those of you unfamiliar with the term, a control array is a collection 
of controls on a form, all having the same name, and possessing 
unique Index property values. It's possible to create a Control array 
that has just a single 'member'---and that's what I'll do now.

I'll begin by placing a Checkbox and a Command button on a form.

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (1 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

In the Command Button, I'll be placing code to dynamically create a 
checkbox on the form at run time. More on that in a few minutes. First, 
I need to tell Visual Basic that the Checkbox is a member of a Control 
Array---I do that merely by changing its Index property from the default 
blank value to a number---in this case 0.

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (2 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Once the Index property has been set to 0, the Checkbox is now a 
member of the Check1 Checkbox Control Array---which makes 
creating a new checkbox at runtime very easy.

All we need to do is tell Visual Basic that we want to create a new 
checkbox, using the existing Checkbox as a template. We do this by 
executing the Visual Basic Load Statement within the Click Event 
Procedure of the Command Button---like this.

Private Sub Command1_Click()

Load Check1(1)

Check1(1).Caption = "New Checkbox"

End Sub

The Load statement

Load Check1(1)

tells Visual Basic to create a new member of the Check1 checkbox 
array---and to create it with an Index property of 1. This statement

Check1(1).Caption = "New Checkbox"

gives the Checkbox, whose index property is equal to 1, a unique 
caption to make it 'stand out' form the original checkbox placed on the 
form at design time.

If we now run the program, and then click on the Command Button 
we'll see this screenshot

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (3 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Oops…something's wrong.

What I didn't tell you is that when you create a control at runtime, by 
default, the Visible property of the new control is set to False. To see 
the new control, we need to explicitly set its Visible property to True. 
Let's modify the code in the Click event procedure to look like this…

Private Sub Command1_Click()

Load Check1(1)

Check1(1).Caption = "New Checkbox"

Check1(1).Visible = True

End Sub

Now let's run the program again, and click on the Command Button 
once more…

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (4 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Something is still wrong---there's still just the single checkbox!

The problem is this: when the new control is created, the properties of 
the new control are identical to the properties of the 'template' control 
used to create it---with the exception of the Index property which we 
set with the Load statement, and the Visible property which we know is 
initialized to False. Because of that, the new checkbox is on the form---
it just so happens to be sitting 'under' the first control, since it has 
identical Top, Left, Height and Width properties.

All we need to do to see the new control is to move it away from the 
first control---and we can do that by adding a line of code to the Click 
Event procedure to change the Top property of the new control. Like 
this…

Private Sub Command1_Click()

Load Check1(1)

Check1(1).Caption = "New Checkbox"

Check1(1).Visible = True

Check1(1).Top = Check1(0).Top + Check1(0).Height

End Sub

This line of code

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (5 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Check1(1).Top = Check1(0).Top + Check1(0).Height

tells VB to take the current value of the Top property of the existing 
checkbox, and to add to that the value of its Height Property 
(remember, the first control has an Index property of 0). The result of 
this addition is a Top property for the new control that is just under the 
first control.

If we now run the program, and click on the Command Button, we'll 
see this screen shot…

Works like a charm!

I should also point out that if we want to give the user the impression 
that we are creating controls totally from scratch, we can place the 
template control on the form---and then set its Visible property to 
False---that way, at run time, the controls are created---seemingly out 
of nowhere.

To review, here’s a summary of the steps necessary to create a new 
control using the Control Array method.

1. Create a control array of the control type you wish to create at 
runtime. If you want to create a textbox at runtime, create a 
Textbox control array. If you want to create a Command Button, 
create a Command Button Control array. Remember, to create a 
Control Array, all you need to do is to change the Index property 

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (6 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

of the control to something other than its default empty value.

2. Use the Load Statement, with a unique Index property, to 
create the new control.

3. Change the Visible property of the new control to True in order 
to make it visible.

4. Change the coordinate properties (Left or Top) to bring the new 
control out from under the original.

Method 2---Creating controls from scratch using the 
Controls Collection

There's a second method to create a control at runtime, and that's to 
use the Add Method of the Controls collection. This method is easier 
to use than the Control Array method, but harder to understand since 
it requires some familiarity with the Visual Basic Controls Collection. (I 
discuss the Controls Collection in my latest book, Learn To Program 
Objects with Visual Basic 6.)

In short, each control that is placed on the form either at Design time 
or runtime is made a member of the intrinsic Visual Basic Collection 
called the Controls Collection. For those of you not familiar with Visual 
Basic Collections, a Collection is similar to a one dimensional array. 
Each control on the form has a reference placed on the Controls 
collection when it is placed there at design time. In the same way, a 
control that is placed on the form at run time (the way we just did using 
the Control Array Method) also has a reference placed on the Controls 
Collection.

It's also possible to create a control at runtime by adding a reference 
to a control directly to the Controls Collection. Doing so avoids the 
necessity of first having to create a 'template' control on the form at 
design time---the reason for that is that VB maintains templates for all 
of the controls in the hidden Visual Basic Global Object called VB 
(again, more on this in my Objects Book).

Suffice to say that all that is required to create a control at runtime 
using this method is to execute four lines of code, like this…

Private Sub Command1_Click()

Dim ctlName As Control

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (7 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Set ctlName = Form1.Controls.Add("VB.TextBox", "Text1", Form1)

ctlName.Visible = True

ctlName.Top = Check1(0).Top + Check1(0).Height

End Sub

This line of code

Dim ctlName As Control

declares something known as an Object Variable---which is nothing 
more than a variable that contains, as a value, a reference to an 
Object (in this case, a Textbox). You can declare an Object variable as 
a specific control type (such as Textbox) or elect to declare it as the 
more generic Control type, which is what we did here.

This line of code

Set ctlName = Form1.Controls.Add("VB.TextBox", "Text1", Form1)

tells Visual Basic to add a Textbox control called Text1 to the Controls 
Collection of Form1, and to use the Object Variable ctlname to 'point 
to it'. Once this control has been added to the Controls Collection, 
thereafter whenever we refer to the control using code we must refer 
to it by the Object Variable Name. That's why, when we then set the 
Visible property of the new textbox to True, and adjust its Top 
property, we use the Object Variable name instead.

ctlName.Visible = True

ctlName.Top = Check1(0).Top + Check1(0).Height

More on the Add Method.

The Add Method has three arguments---the first is the name of the 
template for the control you are creating, the second is the name of 
the control as it will appear in the Controls Collection, and the third 
argument is the control's container (ordinarily the form, but it could be 
the name of a Frame Control if you wanted the control to be placed 
'within' a Frame on the form).

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (8 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

The Textbox control is called Textbox, the Command Button control is 
called CommandButton. If you open the Visual Basic Object Browser 
(View-Object Browser from the Visual Basic Menu Bar)

and select the VB Global Object in the library listbox…

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (9 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

the resulting display will show you the names for the controls that you 
can create at runtime…

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (10 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

Again, for more information on the Visual Basic Object Browser, check 
out my Objects book.

If we now run the program, and click on the command button, we'll see 
this screenshot…

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (11 of 12)3/28/2004 11:41:37 AM



Creating Visual Basic Controls At Runtime

As you can see, the new Textbox control has been placed on the form.

Summary

The ability to add controls to a form at run time can produce incredibly 
dynamic forms.

 

http://www.johnsmiley.com/cis18.notfree/Smiley007/Smiley007.htm (12 of 12)3/28/2004 11:41:37 AM


	johnsmiley.com
	Creating Visual Basic Controls At Runtime


