
Raising Events from Visual Basic 6 Collection Objects

Raise Events from Visual Basic 6 Collection objects

I recently received an email concerning some code in my Learn to Program Objects with Visual Basic 
book.

In chapter 6 of the book, I illustrated how you can create a Class Module (the Dish Class) whose 
objects (Dish Objects) can 'raise' events back to the code that instantiates the object. Events, when 
used in this manner, are an important means of communication between an object and the code using 
the object. 

What's the question then?

In Chapter 7, when we created a Collection Object called Order which itself created the Dish Object 
from Chapter 6, we no longer raised an event from the Dish object. Is this possible? Is it possible to 
raise an event from the Dish Object to the Order Collection Object?

The answer is 'Yes', but before we do not, let's first review what we did to raise the event out of the 
Dish Object.

A Quick Review of Events

All that's required is that you declare the Event in the General Declarations section of your class 
module, and then 'raise' the event using the RaiseEvent statement. Let's review the code from the 
China Shop project. This statement was placed in the General Declarations Section of the Dish Class 
Module

Public Event DataChanged(Item As String, Value As Variant)

What we've done here is to declare an event called DataChanged which will pass two arguments, Item 
and Value, back to the program that creates an instance of the Dish Object from this class. This code

RaiseEvent DataChanged("Quantity", m_strBrand)

was placed in the Property Let procedures of the Brand Property (and similar code was placed in other 
Property Let procedures as well)--the idea being that when one of the properties of the Dish object was 
changed, we alert the calling program to this fact.

That's it for the code in the Dish Class Module--we then needed to take steps, within the Main form of 
the China Shop project to react to the event. This is a two step process. 

First, we need to declare objects from the Dish Class module, using the 'WithEvents' keyword to tell 
Visual Basic that the Dish object raises events, and we wish to handle them. We placed this code in the 
General Declarations Section of the form…

http://www.johnsmiley.com/cis18.notfree/Smiley016/Smiley016.htm (1 of 5)3/28/2004 11:53:29 AM



Raising Events from Visual Basic 6 Collection Objects

Private WithEvents m_dshPlate As Dish
Private WithEvents m_dshButterPlate As Dish
Private WithEvents m_dshSoupBowl As Dish
Private WithEvents m_dshCup As Dish
Private WithEvents m_dshSaucer As Dish
Private WithEvents m_dshPlatter As Dish

This needs to be done in the General Declarations Section of the form so that 'event procedures' for 
each of the Object variables that we declare appear in the Dropdown list of objects within the code 
window. Once we find the appropriate event procedure, we can then place code of our choice in the 
event procedure to react to the event when it is raised out of the Dish object…

Raising an event from the Dish object to the Collection Object

Raising an event from the Dish Object to the Order Object is no problem--and we don't need to change 
the Dish Object at all--all of the work is done using the Collection Object. The first thing we need to do 
is change the declaration of the Dish Object in the Collection Object so that Visual Basic knows we 
wish to accept events raised from the Dish Object. Let’s take the declaration of the Dish Object out of 
the Add Method of the Collection Object, and move it to the General Declarations Section instead 
(remember, for the WithEvents keyword to produce an Event Procedure in the dropdown ListBox, we 
need to declare the object in the General Declarations Section.)

Private WithEvents objDish As Dish

Once we do that, we should see an event procedure listed in the dropdown ListBox of the Collection 
Class…

http://www.johnsmiley.com/cis18.notfree/Smiley016/Smiley016.htm (2 of 5)3/28/2004 11:53:29 AM



Raising Events from Visual Basic 6 Collection Objects

If we run the program now, and click on the Brands ListBox, we'll receive a message telling us that the 
brand of china has been changed to Corelle. 

Similarly, if we select a Plate, we'll receive a message telling us that the item of change has been 
changed to 'Plate'..

Taking this a step further

It's possible for the Dish Object to pass even more information back about itself to the Collection object 
by raising an event---the event can be raised an instead of passing back two arguments consisting of 
the item that has been changed and its value, we can also have the Dish object pass back a reference 
to the Dish object itself. What this means is that the Collection object would have direct access to each 
of the Properties of the Dish Object.

http://www.johnsmiley.com/cis18.notfree/Smiley016/Smiley016.htm (3 of 5)3/28/2004 11:53:29 AM



Raising Events from Visual Basic 6 Collection Objects

To do that, we'll need to change the way the DataChanged event is declared and raised within the Dish 
Object. Let's look at the Declaration first…

Public Event DataChanged(Item As String, Value As Variant, objDish As Dish)

As you can see, this declaration has three arguments, with the third argument being a Dish Object. This 
tells Visual Basic that the DataChanged event, when raised, will be passing a reference to a Dish 
object along with it. 

Not surprisingly, having changed the declaration for the event, we now need to supply a third argument 
when we raise it. Just to refresh your memory, we raise the event whenever any one of the Dish Object 
Properties change. Here's the new look of the line of code to raise the DataChanged event in the 
Property Let procedure for the Brand…

RaiseEvent DataChanged("Quantity", m_strBrand, Me)

You may be wondering what 'Me' is? 

'Me' refers to the actual instance of the Dish Object that is raising the event. At the time the Dish Class 
is coded, there's no way to know what the Object variable name used to refer to it will be. 'Me' tells 
Visual Basic not to worry about the name---just to pass a reference to the Dish Object to the Collection 
Object. 

Once the event is raised to the Collection object, the additional information supplied by the Dish Object 
necessitates a change to the Event Procedure Header. Look at the difference…

Notice that within the event procedure, we can refer to individual properties of the Dish Object by 
prefixing the name of the argument---objDish---to a property name. If we execute the program now, and 
click on the Brands ListBox, we'll receive this message…

 

http://www.johnsmiley.com/cis18.notfree/Smiley016/Smiley016.htm (4 of 5)3/28/2004 11:53:29 AM



Raising Events from Visual Basic 6 Collection Objects

Passing a reference to an entire object like this can save you a bunch of work. In fact, if we wanted to, 
we could modify the event so that the only argument we pass is a reference to the Dish object. 

Suppose? 

Suppose you want your form to be able to react to events within the Dish Object. Can that be done?

The answer is 'No'---since we are now instantiating the Dish Object via a method of the Order 
Collection Object, only the Collection Object can directly react to events of the Dish Object. However, 
there's nothing to stop you from writing code in the Collection Object that raises an event of its own in 
response to an event in the Dish Object. 

Confused?

If you're confused by anything I've shown you here, feel free to download a copy of the China Shop 
project I've coded up which includes these changes. You can download it from this location…

http://www.johnsmiley.com/downloads/marilyn.zip

Be sure to unzip the files into a directory called

C:\VBFILES\CHINA

so that the program runs properly.

Summary

I hope that this article will give you an insight into the enormous power that object to object 
communication can give you.

http://www.johnsmiley.com/cis18.notfree/Smiley016/Smiley016.htm (5 of 5)3/28/2004 11:53:29 AM

http://www.johnsmiley.com/downloads/marilyn.zip

	johnsmiley.com
	Raising Events from Visual Basic 6 Collection Objects


