
Writing Your Own SubProcedures and Functions in Visual Basic 6

Write Your Own Sub Procedures and Functions in 
Visual Basic 6

Sometime after a beginner finishes with their first program, they either ask themselves or 
me about the need or importance of writing their own Procedures (in Visual Basic there 
are two types of Procedures---Subprocedures---I'll discuss the differences shortly.)

I should tell you right up front that if you never write a procedure or function of your own, 
the world won't end, and your programs will still run---and just as efficiently. For those of 
you who read my book, Learn to Program with Visual Basic, you may have noticed that it 
wasn't until the final chapter of the book that I took the code I had written in the previous 
14, and placed some of it in my own Procedures. Placing the code in Procedures had no 
impact on how fast the program ran.

Then why bother?

Benefits of writing your own Procedures

The real benefits of taking code that you have written, and placing it in Procedures of 
your own is threefold: Modularity, Portability, and Readability.

Modularity

When you start to write your own Procedures, your code naturally becomes very 
modular. What does that mean?

In short, Modularity is a programming term that means that the code in a procedure (let's 
say an event procedure for the sake of discussion) is short and to the point. In Visual 
Basic, as you know, we write code and place it in event Procedures so that when an 
event is triggered (usually by the user doing something, such as clicking the mouse or 
entering something into a TextBox), that code is executed. If you look in an event 
procedure, and see several hundred lines of code, most likely that code is not modular. 
Modular code seldom (there are exceptions to any rule!) exceeds the length of your code 
window, and should perform just a single function.

This is a big joke to my students in my university classes, because whenever I hear or 
see someone proclaim that the code in a procedure should perform only one function, I 
dare that person to define a function for me. It sounds simple, but it really isn't. 

For instance, if you are writing a program to process payroll, is a single function the 
calculation of the employee's Net Pay. No, that's too broad. As a programmer, you need 
to break that process into three 'modules'---the calculation of Gross pay, the calculation 
of payroll withholding taxes, and the calculation of net pay. 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (1 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

But even that's too broad. In the United States, the calculation of payroll taxes requires 
separate calculations of Social Security Taxes, Federal Taxes, State Taxes and local 
taxes. Theoretically then, each one of these calculations should appear in a separate 
module or procedure of their own---one for each one of these tax calculations. 

Purists of modular programming would even argue that a payroll program should have a 
separate module or procedure written for each State's tax calculations. Since each State 
in the United States taxes payroll differently (some states don't tax at all, some tax a flat 
rate percentage, some have a graduated tax calculation), this makes a lot of sense. 
Trying to 'lump' all fifty states' tax calculations into a single module or procedure would 
make that procedure very long indeed. 

Portability

Portability just means that the code in a procedure can be used, whole and intact, with no 
modifications, in another program. For instance, if you write some code that checks to 
see if a PC has a CD-ROM drive attached, if you place that code in a procedure called 
IsThereACDROM, you should be able to include that code, without modification, in any 
other program you write. That's portable code. Better yet, if you place that code, and 
other code like it, in a Visual Basic Standard Module, all you need to do is include the 
Standard Module in every Visual Basic program you write, and you access to every 
clever procedure you'll ever write. That's portable code, and it's a big advantage that 
comes when you take the clever code you write and place it in Procedures of your own.

Readability

The third benefit of writing your own Procedures is readability. I've already mentioned 
that a by product of writing your own Procedures is modularity---the length of your code 
becomes shorter---both in the event Procedures that call the Procedures that you write, 
and in the Procedures themselves. Procedures that are short in the number of lines of 
code written are just naturally easier to read---and code that is easier to read is code that 
is easier to modify---either by you, the original programmer, or by the person who may 
modify it in the future.

Types of Procedures

There are two types of Procedures in Visual Basic---SubpRocedures and Functions. Both 
types of Procedures do something. The only difference between the two is that a 
Function returns a value to the Procedure that calls it, and a Subprocedure does not. Let 
me illustrate each one for you with a very simple code example---we don't need to get too 
fancy here.

Subprocedures with no arguments

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (2 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Here's an example of some code that we can place in the click event procedure a 
command button which adds two numbers, and displays the result in a message box. 
Again, nothing fancy here, but it will illustrate my point perfectly.

Private Sub Command1_Click() 

Dim intFirst As Integer
Dim intSecond As Integer
Dim intResult As Integer

intFirst = 3
intSecond = 19

intResult = intFirst + intSecond

MsgBox "The Answer is " & intResult 

End Sub 

All I'm doing here is declaring three Integer type variables, assigning values to two of 
them, adding them and assigning the result to a third variable. At that point, I then display 
the value of their variable in a Message Box. If we run this program, and click on the 
command button, this is what we'll see...

Now let's say we decide that this code is a perfect candidate to be placed in a procedure. 
How do we do that?

Let's work with a Subprocedure first. Remember, a Subprocedure is code that does 
something, without returning a value to the calling Procedure. 

In Visual Basic, there are two ways two created your own Procedures. 

With your Code Window open, select Tools-Add Procedure from the Visual Basic Menu 
Bar, and the following dialog box will appear.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (3 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Let's call the Procedure Calculate (use Mixed case in naming your procedures), and 
leave the Type as 'Sub' for Subprocedure, and the Scope as Public.

When you click on the OK button, Visual Basic will create a Subprocedure for you in the 
form called 'Calculate', and you'll then see it in the Code Window.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (4 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

It's worth noting here that we could also 
create this procedure in a Standard Module, 
in which case it would be easily accessible 
and executable from every form in our 
application. 

What we need to do at this point is take the code out of the Click Event Procedure of the 
command button, and place it in the 'Calculate' Subprocedure. We can do that by 
selecting the code in the click event procedure, and 'cutting and pasting' it into the 
Subprocedure. This is the way the Subprocedure should read after we have done that.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (5 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Now we need to add a single line of code to the click event procedure of the command 
button to call the Subprocedure. There are two ways to call the Subprocedure---with the 
Call Statement or without. I prefer to use the 'Call' statement because it alerts me to the 
fact that 'Calculate' is a procedure of my own. 

You can't see it in this screen shot, but when I entered the code in the clicked event 
procedure of the command button, I typed the Subprocedure name in lower case. Visual 
Basic should change the case to Mixed case (which is how I name all of my procedures). 
If Visual Basic leaves the name in all lower case, then you know that you have 
misreferenced the name.

If we then run the program, and click on the command button, the code in the click event 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (6 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

procedure finds the Subprocedure called 'Calculate' in the General Declarations Section 
of the form, runs it, and displays this message box.

Subprocedures with one or more arguments

You can argue that this Subprocedure, while it does the job, is pretty inflexible. The 
answer will always be the same--22.

Let's modify the Subprocedure to accept arguments for the two numbers to be added, 
which will make it much more flexible. To do that, we need to modify the Subprocedure to 
look like this..

We've changed a number of things here. 

Notice that the subprocedure header has changed---instead of an empty set of 
parentheses, we're now telling Visual Basic that when this Subprocedure is called, it will 
be 'passed' two Integer arguments. The names 'First' and 'Second' are totally arbitrary---
we could the arguments anything we want. Notice also naming the arguments within the 
Subprocedure header servers as the declaration for the arguments---there's no need for 
a separate declaration of them in the body of the Subprocedure.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (7 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

For that reason, the only 'Dim' statement remaining is for the declaration of the variable 
intResult. The values for First and Second will be passed when we call the 
Subprocedure. Let's call it now, asking it to calculate the addition of 5 and 33.

I've been asked many times "When do I need parentheses and when don't I?" when 
calling procedures.

In short, if you use the Call Statement to call a procedure, and you are passing it an 
argument, you need to place the arguments in parentheses. Notice that as soon as I type 
the first parenthesis, Visual Basic gives me a 'hint' as to the number and type of the 
arguments required by the Subprocedure.

 

Pretty clever, that Visual Basic editor! How can we go wrong now, as we now know we 
need two arguments, both Integer data types. Here's the statement to ask the Calculate 
Subprocedure to tell us what 5 plus 33 is...

If we now run the program, Visual Basic will display this message box.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (8 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

There, that's better. Now we've produced a very flexible Subprocedure. 

Subprocedures with one or more arguments 

Suppose we want to take this a step further, and allow the user of our procedure to 
optionally specify the mathematical operation they wish to perform---that is, addition, 
subtraction, multiplication or division. Furthermore, if they don't supply an operator, let's 
presume they want to perform addition.

Before I show you how to declare an optional argument in a Subprocedure, let's first 
modify the Subprocedure by creating a mandatory third argument called 'Op', and adding 
a Select...Case structure, like this. 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (9 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Notice that I have broken the Subprocedure header into two lines using the Visual Basic 
line continuation character--the hyphen (_). Remember, you can use the line continuation 
character anywhere within Visual Basic except in the middle of a quoted string. 

Here's the code to call the Calculate Subprocedure which will display the result of 5 
multiplied by 33.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (10 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Notice that because I declared the third argument 'Op' as a string argument, the Call 
statement needs to pass the third argument as a string (that's why the asterisk is in 
quotation marks.)

If we now run this program, you'll see the following message box.

By the way, what happens if you don't pass the Subprocedure the proper number of 
arguments? 

Let me remove the third argument from the Call Statement ...

.. run the program, and click on the command button. You receive a nasty Visual Basic 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (11 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

message like this...

which is Visual Basic's way of saying, "The Subprocedure needs three arguments---you 
passed me two."

Now back to this Optional business.

To create an Optional argument, all you need to do is precede the argument name in the 
Procedure heading with the word 'Optional'. Optional arguments must appear last in the 
Procedure header---in other words, we can't declare an Optional argument, and then 
follow it up with a mandatory one. You can have as many optional arguments as you 
need, but they must be declared after all of the mandatory arguments have been 
declared. Here's the modified Subprocedure header to tell Visual Basic that 'Op' is an 
optional argument.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (12 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Notice the use of the word 'Optional' before the third argument 'Op'. If we now run the 
program, and call this Subprocedure with just the two required arguments, here's what 
we'll see...

The program doesn't bomb--but neither does it do what we intended.

The answer shouldn't be 0! Remember, we had intended that if the third argument wasn't 
supplied, that we would presume the user wanted to perform addition. The answer 
should be 38.

We need a way to determine if the user supplied us with the Optional argument, and any 
time that you declare a procedure with Optional arguments, you need to take into 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (13 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

account what your code should do if the optional arguments are not supplied.

How can we check for a non-supplied Optional argument?

To do that, we'll need to make a slight change in our code, and there are two ways of 
doing that.

First, we can check to see if the Op argument is a empty string. If it is, we can then just 
assign the plus sign to it like so...

If Op = "" then Op = "*" 

Here's the modified Subprocedure.

Now if we run the program, and pass the Subprocedure just the two required arguments, 
the Calculate Subprocedure is smart enough to presume addition, as we get this result.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (14 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

That's better. I mentioned that there are two ways to check to see if the optional 
argument has been supplied.

The second way is to use the Visual Basic function IsMissing, which was designed to do 
exactly what we did ourselves a minute ago in code. One quirk of the IsMissing function, 
however, is that it only works properly if the Optional Argument is declared as a Variant. 
That means we need to change the Optional variable declaration of 'Op' to a Variant, in 
addition to using the IsMissing function in our code. 

Notice the differences here---we've changed the declaration of the Optional argument 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (15 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

'Op' to a Variant----and now we're using the IsMissing function to determine if the 
Optional third argument has been passed to the procedure.

If we run this program now, the result is correct---a message box with the value 38 in it.

By the way, don't forget to ensure that the program behaves properly with all three 
arguments passed. Let's change the Call statement to calculate 5 minus 33 like this...

The answer should be -28...

Functions

Having spent a good deal of time discussing Subprocedures, you may think that creating 
your own functions is going to be a great deal more difficult.

Not at all!

As I mentioned earlier, the only difference between a Subprocedure and a function is that 
the fact that the Function returns a value to the calling procedure. 

Let's take the Calculate Subprocedure we've already written, and take the responsibility 
of displaying the result away from it, and instead return the result to the event procedure 
that calls it. As soon as we talk about returning a result, we know that we're dealing with 
a function. There are a few administrative changes that we'll need to make, like changing 

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (16 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

the word 'Sub' to Function in the Procedure Header and the Procedure trailer. And, 
because a function returns a value, we need to declare the type of the return value in the 
header. Finally, the way that a return value is passed from the function back to the calling 
procedure is by assigning the return value to the name of the function somewhere within 
the body of the function. Here's the code for the function.

I created this function by modifying the existing 
subprocedure 'Calculate'. If you want, you can 
create the function 'by scratch' by selecting 
Tools-Add Procedure from the Visual Basic 
menu bar, and specifying 'Function' as the 
procedure type.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (17 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Take note of the following changes:

1. The procedure header and trailer now read 
'Function' instead of Sub. 

2. 'As Integer' appears at the end of the Function 
Header. That's the declaration for the return type. 

3. This line of code 

Calculate = intResult 

appears in the body of the Function. That's the 
assignment of the return value taking place. 

3. The Msgbox statement has been removed from the 
code. We'll take care of this in the calling procedure.

Speaking of the calling procedure, let's change the code in the click event procedure to 
look like this:

Since 'Calculate' is now a Function, we need to handle its return value. We can do that in 
two ways. 

1. Assign the return value to a variable, as we're doing in the code above or

2. Use the return value in an expression, like this ...

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (18 of 19)3/28/2004 12:09:11 PM



Writing Your Own SubProcedures and Functions in Visual Basic 6

Either way, if we now run this program, and click on the command button, this message 
box will be displayed...

That's perfect. 

As I frequently say, there's more than one way to paint a picture. You've seen here that 
we were able to achieve the same functionality in our program using either a 
Subprocedure or a function. 

Summary

Subprocedures and Functions can make your program modular, portable, and very 
readable---not to mention very powerful. After you are certain that your program is 
working properly, take a look at any code you have written which may be a candidate for 
inclusion in a function or a procedure of its own.

http://www.johnsmiley.com/cis18.notfree/Smiley027/Smiley027.htm (19 of 19)3/28/2004 12:09:11 PM


	johnsmiley.com
	Writing Your Own SubProcedures and Functions in Visual Basic 6


