
Use the Visual Basic 6 APP object to polish your applications

Use the Visual Basic 6 APP object to polish your applications

One of the more interesting 'built in' System Objects in Visual Basic is the App Object. The APP (short for
Application) Object gives your Visual Basic program information about the Application or Project itself. If
you've never used some of the APP Object's Properties and Methods, you don't know what you're missing.
APP properties can be accessed at runtime to give your program additional functionality and polish. We'll
see how in just a bit.

APP Object Properties

Let's start with the APP Object's Properties. As I mentioned, the APP Object specializes in providing you
with information about your program. Most of this information can be entered by the program via the Project
Properties Windows, although some of it is available only at runtime.

Let's examine the Project Properties Window now. The Project Properties window contains 5 tabs, two of
which are of interest to us in this discussion of the APP Object. Let's start with the General Tab.

General Tab APP Properties

Here's a screen shot of the General Tab of a Visual Basic Project…

There's just one Property of the APP object which can be set via the General Tab, and that's the HelpFile

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (1 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

Property…

HelpFile

The HelpFile Property of the APP Object specifies the path and filename of a Help file used by your
application to display Help or online documentation, and can be specified in the Help File Name of the
General Tab of your Project's Properties Window…

If you've created a Help file for your application and set the application's HelpFile property, Visual Basic
automatically calls Help when a user presses the F1 key. If there is a context number in the HelpContextID
property for either the active control or the active form, Help displays a topic corresponding to the current
Help context; otherwise it displays the main contents screen.

From a programming perspective, there's not much we can do with the HelpFile property---suffice to say that
if it's set to a valid Help File, it can provide additional functionality for our program.

Make Tab APP Properties

Many more APP Object properties can be set via the Make Tab of the Project Properties Window, and many
of these are very valuable. Here's a screen shot of the Make Tab of a Visual Basic Project…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (2 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

Let's start an alphabetical review of these properties.

Comments

The Comments property returns or sets a string containing comments about the running application. You
can set this property at design time in the Type box in the Make tab of the Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (3 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

You can also access this property at runtime if you wish.

CompanyName

The CompanyName Property returns or sets a string value containing the name of the company or creator
of the running application. You can set this property at design time in the Type box in the Make tab of the
Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (4 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

By default, the CompanyName property contains the Company Name specified when you installed Visual
Basic. You can override this value if you wish…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (5 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

FileDescription

The FileDescription Property of the APP Object returns or sets a string value containing a file description
information about the running application. You can set this property at design time in the Type box in the
Make tab of the Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (6 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

LegalCopyright

The LegalCopyright property of the APP Object returns or sets a string value containing legal copyright
information about the running application. This property is Read only at run time. You can set this property
at design time in the Type box in the Make tab of the Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (7 of 19)3/28/2004 12:02:10 PM

javascript:hhobj_4.Click()

Use the Visual Basic 6 APP object to polish your applications

LegalTrademarks

The LegalTrademarks property of the APP Object returns or sets a string value containing legal trademark
information about the running application. You can set this property at design time in the Type box in the
Make tab of the Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (8 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

ProductName

The ProductName property of the APP Object returns or sets a string value containing the product name of
the running application. You can set this property at design time in the Type box in the Make tab of the
Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (9 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

Title

The Title Property of the APP Object returns or sets the title of the application that is displayed in the
Microsoft Windows Task List. If changed at run time, changes aren't saved with the application. You can set
this property at design time in the Title box in the Make tab of the Project Properties dialog box…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (10 of 19)3/28/2004 12:02:10 PM

javascript:hhobj_4.Click()

Use the Visual Basic 6 APP object to polish your applications

Version Numbers

So far, the properties that we've seen may not have been of great interest to you--but the next three
properties---which are used to track version numbers of your compiled programs, can be a life saver.

Major

Returns or sets the major release number of the project. The value of the Major property is in the range
from 0 to 9999. This property provides version information about the running application.

You can set this property at design time in the Major box in the Make tab of the Project Properties dialog
box.

Minor

Returns or sets the minor release number of the project. The value of the Minor property is in the range
from 0 to 9999. This property provides version information about the running application.

You can set this property at design time in the Minor box in the Make tab of the Project Properties dialog
box.

Revision

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (11 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

Returns or sets the revision version number of the project The value of the Revision property is in the range
from 0 to 9999.

This property provides version information about the running application. You can set this property at design
time in the Revision box in the Make tab of the Project Properties dialog box.

These number can be anything you want--typically, the initial release of a new program will have a Major
value of 1, a Minor value of 0, and a Revision value of 0. You can increment either the Minor or Revision
numbers for very minor changes to the program, and increment the Major value for significant changes to
your program.

I typically display these properties as part of the Caption property of the main form of my application. This
can help to avoid a lot of confusion when you distribute programs (and revisions) to your users. For
instance, here's some code that will display the Major, Minor and Revision Properties of the App Object…

Private Sub Form_Load()

Form1.Caption = "John's Program---Version " & _
 App.Major & "." & _
 App.Minor & "." & _
 App.Revision

End Sub

When the program starts up, the Form's caption will then appear like so…

You can make changes to the Major, Minor and Revision Properties by updating them directly via the Make
Tab, like so…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (12 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

You can also have Visual Basic automatically increment the Revision Property of the APP Object by
checking the Auto Increment checkbox…

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (13 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

Placing a check in the Auto Increment checkbox tells Visual Basic to automatically increment the Revision
number when your program is compiled. This can be a life saver if you make lots of revisions to your
program, and are likely to forget to adjust the Revision property manually---it's done for you, ensuring that
the user of your program always knows the version of the program they are running.

This series of Version Properties marks the last of the Properties that can be accessed or modified via a
Property Page. Here are the remainder of the APP Object's Properties I'd like to discuss in this article.

EXEName

The EXEName Property of the APP Object returns the root name of the executable file (without the
extension) that is currently running. If running in the development environment, this property returns the
name of the Visual Basic project. If running as an executable, it's the name of the compiled executable.

Logging Properties and Methods

A series of very useful Properties and Methods of the APP object pertain to the little known capability of
Visual Basic to log events and messages to a log file. You can use a Log File to provide an 'audit trail' of
events that take place in your program. Other programmers I know make writing to a Log file a standard part
of their Error Handling Procedures. Let's take a look at the Logging Properties first--both of which are read-
only, and are actually set by the StartLogging Method of the APP object. CAUTION: On Windows NT
machines, events can only be written to the Windows NT Event Log.

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (14 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

LogMode

The LogMode Property of the APP Object returns a value which determines how logging (through the
LogEvent method) will be carried out. CAUTION: On Windows NT machines, events can only be written to
the Windows NT Event Log. The possible values for the LogMode Property are:

Constant Value Description

vbLogAuto 0 If running on Windows 95 or later, this option logs messages to the file
specified in the LogPath property. If running on Windows NT,
messages are logged to the Windows NT Application Event Log, with
"VBRunTime" used as the application source and App.Title appearing
in the description.

VbLogOff 1 Turns all logging off. Messages from UI shunts as well as from the
LogEvent method are ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is present in LogPath,
logging is ignored, and the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not running on Windows NT, or
the event log is unavailable, logging is ignored and the property is set
to vbLogOff.

VbLogOverwrite 0x10 Indicates that the logfile should be recreated each time the application
starts. This value can be combined with other mode options using the
OR operator. The default action for logging is to append to the existing
file. In the case of NT event logging, this flag has no meaning.

VbLogThreadID 0x20 Indicates that the current thread ID be prepended to the message, in
the form "[T:0nnn] ". This value can be combined with other mode
options using the OR operator. The default action is to show the thread
ID only when the application is multi-threaded (either explicitly marked
as thread-safe, or implemented as an implicit multithreaded app, such
as a local server with the instancing property set to Single-Use,
multithreaded).

This property is read-only, and is actually determined by values specified for the logMode argument of the
StartLogging Method.

LogPath

The LogPath Property returns the path and filename designated to capture output from the LogEvent
Method. If no LogPath is set, the LogEvent method writes to the NT LogEvent file. This property is read-
only, and is actually determined by values specified for the LogTarget argument of the StartLogging Method.
CAUTION: On Windows NT machines, events can only be written to the Windows NT Event Log.

StartLogging (This is a method)

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (15 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

The StartLogging Method sets the log target and log mode of an operation. The StartLogging method
requires two arguments---logTarget and logMode. LogTarget is the Path and filename of the file used to
capture output from the LogEvent method, and logMode determines how logging will be carried out.
Possible values for logMode are:

Constant Value Description

vbLogAuto 0 If running on Windows 95 or later, this option logs messages to the
file specified in the LogFile property. If running on Windows NT,
messages are logged to the Windows NT Application Event Log,
with "VBRunTime" used as the application source and App.Title
appearing in the description.

VbLogOff 1 Turns all logging off. Messages from UI shunts as well as from the
LogEvent method are ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is present in LogPath,
logging is ignored, and the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not running on Windows NT,
or the event log is unavailable, logging is ignored and the property
is set to vbLogOff.

VbLogOverwrite 16 Indicates that the logfile should be recreated each time the
application starts. This value can be combined with other mode
options using the OR operator. The default action for logging is to
append to the existing file. In the case of NT event logging, this
flag has no meaning.

VbLogThreadID 32 Indicates that the current thread ID be prepended to the message,
in the form "[T:0nnn] ". This value can be combined with other
mode options using the OR operator. The default action is to show
the thread ID only when the application is multi-threaded (either
explicitly marked as thread-safe, or implemented as an implicit
multithreaded app, such as a local server with the instancing
property set to Single-Use, multithreaded).

LogEvent (this is a method)

This method of the APP Object logs an event in the application's log target. On Windows NT platforms, the
method writes to the NT Event log. On Windows 95/98 platforms, the method writes to the file specified in
the LogPath property; by default, if no file is specified, events will be written to a file named vbevents.
log. The LogEvent method requires two arguments---the string to be written to the log, and the event type
which has the following possible values…

Constant Value Description

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (16 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

vbLogEventTypeError 1 Error.

vbLogEventTypeWarning 2 Warning.

vbLogEventTypeInformation 4 Information.

In summary, logging can be achieved by executing the StartLogging method of the APP object to set the
LogMode and LogFile properties of the APP Object, and then executing the LogEvent method of the APP
Object to actually write the log entry. Here's some code that will write an entry to a file called "Logfile.txt" (or
to the Windows NT Event log if running on a Windows NT machine)

App.StartLogging "c:\Logfile.txt", vbLogFile

App.LogEvent "File Read Error", vbLogEventTypeError

We have two very useful properties of the APP object to discuss---PrevInstance and Path. Let's start with
PrevInstance.

PrevInstance

The PrevIntance property of the APP Object returns a value indicating whether a previous instance of the
application is already running. You can use this property in a Load event procedure to specify whether a
user is already running an instance of an application. Depending on the application, you might want only one
instance running in the Microsoft Windows operating environment at a time.

The PrevInstance property is only useful when working with a compiled program. This code, placed in the
Load event of the startup form of your application, can detect when the program is already running…

If App.PrevInstance = True Then
 MsgBox "The program is already running..."
 Unload Me
 End
 Exit Sub
End If

Path

The Path property of the APP object returns a string indicating the path (drive and directory) from which the
program is being run. When running from the development environment of Visual Basic, Path specifies the
path of the project .VBP file. When running outside of Visual Basic, this property specifies the path of the
executable file.

I use the Path property to build a little 'flexibility' into the programs I write. For instance, suppose I write,
compile and distribute a program to a user, and part of the logic of the program is to read a disk file called

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (17 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

"smiley.txt" residing in the "\VBFiles" folder of the hard drive, and to display the results on the form. The
code might look something like this…

Dim Retval

Open "c:\vbfiles\smiley.txt" For Input As #1

Do While Not EOF(1)
 Input #1, Retval
 Form1.Print Retval
Loop

Close #1

We're fine provided the user doesn't move the executable and the text file somewhere else. If the user does
move them, this program will generate an error…

To get around that problem, we can use the Path property of the APP object to make our code a bit more
flexible. The Path property will tell us the folder or directory from which our application is running---provided
the text file we are looking for is in the same folder or directory, we can concatenate the name of the file to
the end of the path, like this…

Open App.Path & "\smiley.txt" For Input As #1

There's just one problem---if the user moves the executable to the root directory of their hard drive or floppy,
the return value of App.Path will end with a backslash

c:\

and cause the above code to bomb. For that reason, you should use an If statement to check if the length of
the Path property is 3

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (18 of 19)3/28/2004 12:02:10 PM

Use the Visual Basic 6 APP object to polish your applications

If Len(App.Path) = 3 Then

if it is, then the user is running the program from the root directory, and you should open the file using this
syntax…

Open App.Path & "smiley.txt" For Input As #1

otherwise, use this syntax…

Else
 Open App.Path & "\smiley.txt" For Input As #1
End If

Summary

I hope you enjoyed this article on the wonders of the App Object. For more information on Objects, be sure
to pick up a copy of my book

Learn to Program Objects with Visual Basic

http://www.johnsmiley.com/cis18.notfree/Smiley022/Smiley022.htm (19 of 19)3/28/2004 12:02:10 PM

http://www.johnsmiley.com/mybooks/1929685165/1929685165.htm

	johnsmiley.com
	Use the Visual Basic 6 APP object to polish your applications

