
Working with the Windows API from within Visual Basic 6

Work with the Windows API from within Visual Basic 6

The first question I need to answer is "exactly what is the Windows API?".

The Windows API is a name that collectively refers to the procedures and functions that 
comprise the Windows Operating System. The procedures and functions are shipped with 
Windows in libraries, called Dynamic Link Libraries, otherwise known as DLL's. Every 
operation that takes place on a Windows PC makes use of this collection of procedures 
and functions contained in these DLL's--but for the most part, as a user of the PC, you 
never know about them (unless you happen to get one of those nasty error messages 
when a program bombs referencing a DLL).

When you write programs in Visual Basic, the code that you write makes use of these 
DLL's---but you never know it, because Visual Basic takes care of interacting with these 
DLL's for you. For instance, when you display a message box in Visual Basic, VB makes a 
'call' to a procedure in one of the Windows DLL's to display the message box. 

It's been estimated that 80% of the functionality of the procedures and functions in the 
Windows DLL's has been incorporated into Visual Basic---therefore, when we speak of the 
Windows API, we are really talking about getting at that other 20%.

For Instance?

So what types of operations are we talking about in that remaining 20%?

For the most part, really nerdy stuff that most of us would never want to do anyway. But 
once in a while, a requirement comes along that you’d love to incorporate into your VB 
program, and there's simply no way to do it within VB.

For instance?

How about this---you want to display a splash screen (a form that appears when your 
program first starts up), and you want to display it for exactly five seconds before 
unloading it, and displaying your program's main form.

No big deal you might say---you can just write some code that executes a loop about a 
zillion times, and there's your five second delay.

That's true---you could code a loop to iterate in such a way that it takes five seconds or so 
to complete--the problem is that loop may take five seconds to complete on a Pentium III 
Gigahertz processor---and five minutes on a 486 60 Mhz machine. It seems like there 
should be an easier way to do this, but unfortunately, VB doesn't come shipped with a 
statement that I found so useful in my Paradox programming days---Sleep.

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (1 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

Funny I should mention Sleep, because as it turns out, there is a Sleep procedure included 
in the Windows API---and it can do exactly what I describe---delay processing for a period 
of time. The problem is that it's not a VB function---it's a Windows API function. The 
question is: how to get to the Sleep procedure from within Visual Basic.

What's in the Windows API?

You'll see in a few moments or so that accessing and executing the Sleep procedure from 
within a Visual Basic program is really very easy. The hard part is really knowing what 
functions and procedures are available to us in the Windows API---and I'd like to take a 
few minutes to show you that using the Windows API Text Viewer.

The API Text Viewer

You can access the Windows API Text Viewer by selecting Microsoft Visual Studio 6.0 
Tools from the Visual Basic or Visual Studio menu of the Start Menu…

…then select the API Text Viewer…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (2 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

Selecting that menu item opens up the API Text Viewer…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (3 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

which at first glance can be a little imposing. The API Text Viewer is just an application that 
allows you to view the contents of one of three text files installed with VB, that provide the 
barest form of documentation on the functions and procedures contained in the DLL's 
supplied with Windows. Before we can do anything with the API Text Viewer, we need to 
make a selection of one of the text files. We can do that by selecting File-Load Text File 
from the API Text Viewer menu bar…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (4 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

The three available text files supplied for use with the API Text Viewer appear. For this 
article, we'll be dealing with the Win32api.txt file, which contains documentation on the 
Windows API. If we select that file, and then click on the Open button…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (5 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

…this window will appear. What you see here are the available procedures and functions 
(contained in the Available Items ListBox) that comprise the Windows API, and there are a 
bunch. As you can see, they are listed in alphabetical order, and the first one listed is 
called AbortDoc.

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (6 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

I just happen to know about the Sleep procedure (more on how I know about it later), and 
the next step I need to take at this point is to find the correct syntax to call the Sleep 
procedure within my VB program. To do that, I just type the name of the function I am 
looking for in the textbox above the ListBox labeled 'Available Items:". As I do that, the 
items in the Available Items ListBox scrolls, and there's the Sleep procedure…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (7 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

My next step is to click on the Sleep procedure in the Available Items ListBox, and when I 
do, the correct declaration syntax for the function will appear in the ListBox labeled 
"Selected Items:"…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (8 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

At this point, I need to copy the declaration from the API Text Viewer into my Visual Basic 
program. The API Text Viewer makes that quite easy---all we need to do is click on the 
Copy button, and the contents of the ListBox will be copied to the Windows clipboard…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (9 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

I'll explain the code in a moment or so, but for now I'll start a new Visual Basic project, with 
two forms named Form1 and Form2. On Form1, I'll place a label control captioned 
"SplashScreen", like this…

 

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (10 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

and in the General Declarations Section of the form, I'll paste the declaration for the Sleep 
procedure I just copied from the API Text Viewer (I placed a line continuation character in 
the middle of the declaration so that you can see the code better)

The Declare Statement

Let's take a look at the declaration for the Sleep procedure now. 

Public Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (11 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

I don't know whether you noticed or not, but when I copied the declaration from the API 
Text Viewer, the reference to an 'alias' was dropped. The 'alias' statement of the Declare 
statement allows you to refer to a function or procedure in a Windows DLL with a different 
name within your Visual Basic program. The reason for this is that there are certain 
Windows API functions and procedures that have the same name of Visual Basic reserved 
words---and therefore would cause a compile error in your program. If you find yourself in 
the position of using such a function or a procedure, use the Alias statement--and I must 
warn you the syntax is a bit confusing. For instance, suppose we wanted to refer to the 
Sleep procedure within our program as WakeUp---this would be the syntax.

Public Declare Sub WakeUp Lib "kernel32" Alias "Sleep" (ByVal dwMilliseconds As 
Long)

What's confusing is that the actual name of the function or procedure in the DLL follows 
the Alias keyword. The true Alias follows the keyword Declare! Just tuck this into your 
mental database somewhere---it's not likely to come up in your work, but of course, 
something like this might be asked on one of the VB Certification tests.

Let's look at the syntax of the Declare statement now. 

Public Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Declarations are either Public or Private, the same as any Visual Basic procedure. The 
Declare keyword follows that, followed by the word Sub (for subprocedure) or Function (for 
a function). After that comes the name of the procedure, followed by the keyword "Lib" 
which stands for library, and then the name of the Windows DLL that contains the Sleep 
subprocedure. It so happens that Sleep is found in "kernel32" which is located in the 
Windows\System32 directory. (There's no need to specify the full path of the DLL---neither 
should you specify the .dll extension---just the name). 

Any arguments that the function or procedure is expecting are specified next---in this case, 
the Sleep subprocedure is expecting a single argument of the long data type called 
dwMilliseconds---which represents the length of time in milliseconds that the procedure 
should 'sleep').

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (12 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

At this point I need to warn you about the importance of 
passing the correct type of data to any procedure you 
call via the Windows API. Most functions and 
subprocedures in DLL's are written in C---and C is very 
unforgiving (unlike VB) if you pass it a data type it is not 
expecting. So be very careful. I should also warn you 
that when you call a procedure in a DLL, you are 
crossing the safety of your VB program's boundaries---
and if you call a procedure in a DLL incorrectly, you 
could 'freeze' your PC--therefore, always be careful to 
save any work you're doing on your PC before 
executing a program that calls a Windows API 
procedure---that includes work you're doing in other 
applications such as Word or Excel.

Calling the API Procedure in your code

Now let's write the code to call the Sleep procedure. Since this is a Splash Screen, we'll 
place code in the Load Event of Form1 to call 'Sleep' using the Call statement. The first 
thing we do is execute the Show Method of Form1. Since the startup form (in this case 
Form1) is not actually made visible until the code in the Load Event Procedure wraps up, 
we need to explicitly make the form visible before calling the Sleep procedure, like this…

Notice that as soon as I type the Left Parenthesis, VB provides me with help, telling me 

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (13 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

that Sleep requires a single argument of the Long data type. How does VB know this? 
From the Declare statement we coded. Here's the rest of the code…

We're calling the Sleep procedure, and passing it an argument of 5000 milliseconds---or 5 
seconds. After Sleep wraps up, we'll unload Form1 using the Unload Me statement, and 
then load Form2 and make it visible using the Show method of Form2. If we now run the 
program, we get…

a syntax error! Basically, what VB is telling us is that we can't declare the Sleep procedure 
in the General Declarations Section of the form using the Public keyword. To fix that, all we 
need to do is change the keyword Public to Private…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (14 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

…and then run the program. This time, Form1 appears…

 

and then five seconds late, Form1 disappears and Form2 appears.

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (15 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

For good measure, you might want 
to code a 'DoEvents' statement 
following the Me.Show statement in 
the Load Event Procedure of Form1.

It's interesting to note that if you run your program in 'Step Mode' (run it using F8), when 
the program executes the line of code to call the Sleep procedure…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (16 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

you won't actually see any of the code from the DLL run. DLL's are compiled code, and 
you can't see the code run in Step Mode.

One more example

I mentioned earlier that calling procedures in the Windows API is a good deal easier than 
determining that they exist in the first place. Aside from the API Text Viewer, there's really 
no way to know that a particular function or subprocedure exists, unless you do one of two 
things: buy the Windows Software Developers Kit from Microsoft, or purchase a book on 
the Windows API. The book I recommend is by Dan Appleman, and it's entitled 

Dan Appleman's Visual Basic Programmer's Guide to the Win32 API
ISBN: 0672315904 

It's a great book. It lists a thousand or so Windows API procedures, along with a brief 
explanation as to how they work and behave. The book is nicely organized according to 
procedure type---so that all of the procedures pertaining to Disk Operations appear 
together, all of the procedures pertaining to Printer Operations appear together, etc. 
There's also a section in the book that describes the caution you need to take when calling 
C functions and subprocedures within your Visual Basic program.

As I said, without either the Software Developers Kit or a book such as Appleman's, you're 
basically on your own. You can do what I did several years ago, and just start browsing 
through the Declaration statements that you find in the API Text Viewer. You may find one 
that sounds interesting and decide to experiment with it. I'm going to highlight a procedure 

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (17 of 24)3/28/2004 12:06:55 PM

http://www.amazon.com/exec/obidos/ASIN/0672315904/ref=nosim/professorsmileys/103-1515029-1942209


Working with the Windows API from within Visual Basic 6

called GetDriveType which I found while browsing through Text Viewer, and use it to 
illustrate working with an API function versus the sub procedure Sleep we just examined. 
Remember, a function returns a value to the program that calls it, and this function will 
return a value to your program telling you the type of drive associated with a particular 
drive letter (bear in mind that without some form of documentation, knowing that this 
procedure exists and knowing how to use it can be extremely difficult…)

We'll start by using the API Text Viewer to get the Declare Statement for GetDriveType. 
Notice that I selected Private for the Declare Scope this time…

At this point, I'll create a new Visual Basic project with a single form containing a textbox 
and a command button, and copy and paste the Declare statement into the General 
Declarations Section of the form. 

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (18 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

A couple of words about the Declare Statement. GetDriveType is a function (thus the 
keyword Function in the Declare Statement). It expects a single argument of type String, 
and because it's a function, it will be returning a value to our program when we call it---in 
this case a value of type Long, which is a number.

Let's write the code to call this function now. What we'll be doing is taking a Drive Letter 
that the user enters into a Textbox, and call the GetDriveType to determine the type of 
Drive associated with that Drive letter (this can be quite useful if you want to determine 
whether drive letter E on a user's PC is a CD-ROM or a Hard Disk Drive). 

GetDriveType is a little tricky in that it requires a full path name to be passed to it, not just 
the drive letter (i.e. C:\ not C). How did I discover that? Without documentation, it was hit or 
miss for a while, and then a lucky guess. Dan Appleman's book will point this out for you 
though.

We won't ask the user to type in the full path name--we'll take care of that ourselves by 
concatenating the colon and the backslash to whatever the user enters into the textbox. If 
this were an actual production program we would also add some validation code to ensure 
that the user enters only a single drive letter--but I'll leave that for you to do later. Here's 
the code for the Click Event Procedure of the Command Button.

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (19 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

This code is pretty simple. All I'm doing is taking the drive letter that the user enters into 
the textbox, concatenating a color and backslash to the end of it, and then passing it to the 
GetDriveType function in the kernel32 DLL. Since GetDriveType is a function, we have to 
be prepared to accept a return value, and we'll use the Print Method of the form to display 
the return value on the form, after which I clear the Text property of the Textbox and set 
focus to it for the next entry, 

If we now execute this program, and enter values of A, B, C, D, E and H into the Textbox 
and press the Command button after each entry, we'll see this screenshot…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (20 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

You're probably saying that this is nice, but what do the numbers mean?

Remember, I told you that working with functions and subprocedures in the API can be a 
guessing game---there's no documentation provided. I'll tell you ahead of time that Dan 
Appleman's book will tell you what these numbers mean. Without it, you can guess (for 
instance, the number 2 seems to equate to a floppy drive, the number 3 to a Hard Disk 
Drive (my PC's C and D Drives are both Hard Drive). 1 is a non-existent drive (I have no 
Drive B). 5 is a CD-ROM (My E Drive), and 4 would appear to be a Network Drive (Drive 
Letter F on my PC is a network Drive).

Guessing is hardly ideal, and if you don't want to purchase Dan Appleman's book, you can 
try to use the API Text Viewer. The API Text Viewer has a list of Constants that are used 
within the API…

It so happens that the return values associated with the GetDriveType function are 
represented by Constants beginning with 'drive'

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (21 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

As you can see, there are the values (with the exception of the non-existent drive) that we 
guessed. If we wanted, we could include these values in a Select…Case structure and 
make the display of the drive type more user friendly, like this…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (22 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

Now if we run the program again, once again typing A, B, C, D, E and H into the Textbox, 
this will be the result…

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (23 of 24)3/28/2004 12:06:55 PM



Working with the Windows API from within Visual Basic 6

Summary

I hope you've enjoyed this foray into the world of the Windows API. Using the Windows 
API can make an extraordinary amount of powerful functions and procedures available to 
you.

Feel free to use the API Text Viewer to experiment with functions and subprocedures in 
the Windows API---but remember, save all of your work first!

http://www.johnsmiley.com/cis18.notfree/Smiley026/Smiley026.htm (24 of 24)3/28/2004 12:06:55 PM


	johnsmiley.com
	Working with the Windows API from within Visual Basic 6


