
Passing an Array to and from a Function or Subprocedure in VB6

Passing an Array to and from a Visual Basic 6 Function or
Subprocedure

 In last month's article, I discussed how to use a For…Each statement to 'loop' through the
elements of an Array. In this article, I'll continue my discussion of Arrays by showing you
how to pass an Array, as an argument to a procedure or a function, and also how to pass
back a return value that is itself an Array.

But why?

That's the question a lot of my students ask---why would you want to pass an argument
that is an Array?

The answer to this question presupposes a level of programming sophistication that is not
always present in the beginner's mind---quite simply, beginners don't realize the many
benefits of Array processing to begin with, so it's only natural that they wouldn't conceive of
passing an entire array to a procedure or function for processing---but it's something that's
done all the time. In fact, if for no other reason, you should get comfortable with the notion
since API function and procedure calls frequently require that you pass an Array of some
kind to them, and may also have, as a return value, an Array.

Let's first see how we can create a procedure that accepts, as an argument, an Array.
Let's start by creating a form that has two command buttons, which I'll name
cmdPassArray and cmdAcceptArray…

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (1 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

We'll place code in the cmdPassArray command button to pass an array to a procedure
we'll write. We'll then place code in the cmdReturnArray command button to call a function,
and to receive as a return value from that function, an array.

Write the code to pass the Array

Let's start out by writing the code for cmdPassArray first. Here's the code…

Private Sub cmdPassArray_Click()

Dim x(3) As Integer 'Declare a Static Integer Array of 4 elements

x(0) = 10
x(1) = 20
x(2) = 30
x(3) = 40

Call AcceptArray(x) 'Call the procedure and pass the Array

End Sub

Most of this code is not earthshaking. This line of code initializes a four element Integer

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (2 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

Array called x…

Dim x(3) As Integer 'Declare a Static Integer Array of 4 elements

The next four lines of code assign values to each of the four elements of the array…

x(0) = 10
x(1) = 20
x(2) = 30
x(3) = 40

And this line of code calls the procedure 'AcceptArray' and passes it a single argument---
the array 'x'….

Call AcceptArray(x) 'Call the procedure and pass the Array

Notice how it appears that we are passing the value of the variable x---but since x is
actually an Array, this syntax will pass each element of the Array to the procedure
'AcceptArray'.

Write the SubProcedure to accept the Array as an argument

Let's write the AcceptArray procedure now, and we'll see how we handle accepting the
Array as an argument. To create a procedure in Visual Basic, select Tools-Add Procedure
from the Visual Basic Menu Bar…

When the Add Procedure Dialog Box appears, we can then complete it with the name of
our Procedure---AcceptArray---and also specify its Type as 'Sub--meaning that it is a
SubProcedure that does not return a value…

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (3 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

If we now click on the OK button, Visual Basic will create the SubProcedure 'stub' for the
AcceptArray SubProcedure…

Private Sub AcceptArray(intArray() As Integer)

Dim obj As Variant

For Each obj In intArray
 Form1.Print obj
Next

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (4 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

End Sub

This code should look familiar to you--it's similar to the code from last month's article
where I described how to use the For…Each statement to loop through the elements of an
Array. The key is the Procedure header in which we 'tell' Visual Basic to accept an Array
through the use of the empty set of parentheses following the argument intArray…

Private Sub AcceptArray(intArray() As Integer)

After that, it's a matter of using the For…Each statement to 'loop' through each element of
the passed array to print the value of the array on the form…

Dim obj As Variant

For Each obj In intArray
 Form1.Print obj
Next

If we now run the program, you'll see the values of the Array printed on the form…

Before I move on, I'd like to point out by default, the Array has been passed to procedure
AcceptArray By Value---that means that only a pointer to the Array was passed to the

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (5 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

procedure, not a copy of the actual Array itself. For clarity, you really should specify the
procedure header in this way…

Private Sub AcceptArray(ByRef intArray() As Integer)

For that reason, you need to bear in mind that if you modify any of the Array elements
within AcceptArray, the value of the Array back in cmdPassArray will be altered also. For
instance, this code in AcceptArray …

Private Sub AcceptArray(ByRef intArray() As Integer)

Dim obj As Variant

For Each obj In intArray
 Form1.Print obj
Next

intArray(0) = 11

End Sub

would result in the value of x(0) in the cmdPassArray procedure being set to 11 also. Be
careful!

By the way, Visual Basic will not allow you to pass the value of an Array to a procedure By
Value.)

Write the Function to pass an Array back to the calling procedure

If you understand how to pass an Array to a called procedure, then writing the Function to
return an array back to a calling program isn't too difficult. Here's the code for the
function…

Private Function ReturnArray() As Variant

Dim x(3) As Integer 'Declare a Static Integer Array of 4 elements

x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4

ReturnArray = x 'Pass the array back as a return value

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (6 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

End Function

As was the case with the procedure to accept an Array as an argument, the header is key
here--notice the return value (that's the part that follows the word 'As')---it's a Variant

Private Function ReturnArray() As Variant

which it is required to be in order to pass an Array back to the procedure that calls the
function. The rest of the code is pretty straightforward. This line of code initializes a four
element Integer Array called x…

Dim x(3) As Integer 'Declare a Static Integer Array of 4 elements

The next four lines of code assign values to each of the four elements of the array…

x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4

In case you are not familiar with the syntax for returning a value from a function, you
assign a value to the name of the function itself---since the name of the is ReturnArray, this
line of code assigns the array 'x' to the name of the function 'ReturnArray' which results in
the array 'x' being returned to the calling procedure…

ReturnArray = x 'Pass the array back as a return value

Write the code to receive the Array

Now it's time to write the code to call the function, and receive its return value. We'll place
that code in the click event procedure of cmdReturnArray. Here’s the code…

Private Sub cmdReturnArray_Click()

Dim retval As Variant
Dim obj

retval = ReturnArray 'Assign the return value to a Variant Variable

For Each obj In retval
 Form1.Print obj
Next

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (7 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

End Sub

This line of code declares a variable to 'hold' the return value from the function
ReturnArray that we will call…

Dim retval As Variant

This next line of code is the call to the function. Since a function returns a value, we must
either assign that return value to a variable, use it in an expression, or discard it. Here's
we'll assign it to the variable retval…

retval = ReturnArray 'Assign the return value to a Variant Variable

It's interesting that the variable retval now has the characteristics of an Array. If we wanted
to, we could determine its Upper and Lower bounds, and work with each of its elements.
Of course, we know that there's an easy way to 'loop' through each of the elements of the
array and that's to use the For…Each statement…

For Each obj In retval
 Form1.Print obj
Next

Now if we run this program, and click on the cmdReturnArray command button, the value
of the Array in the ReturnArray function will be displayed on the form…

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (8 of 9)3/28/2004 12:20:55 PM

Passing an Array to and from a Function or Subprocedure in VB6

Summary

I hope this article has opened your eyes to the possibility of working with arrays.

http://www.johnsmiley.com/cis18.notfree/Smiley035/Smiley035.htm (9 of 9)3/28/2004 12:20:55 PM

	johnsmiley.com
	Passing an Array to and from a Function or Subprocedure in VB6

